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Abstract

The lateral aerodynamic characteristics of the X-31 were determined at angles

of attack ranging from 20 to 45 degrees. Estimates of the lateral stability and
control parameters were obtained by applying two parameter estimation

techniques, linear regression and the extended Kalman filter, to flight test data.

An attempt to apply maximum likelihood to extract parameters from the flight
data was also made but failed for reasons given within. An overview of the

System identification process is given, including a listing of the more

important properties of all three estimation techniques that were applied to the
data. A comparison is given of results obtained from flight test data and wind

tunnel data for four important lateral parameters. Finally, future research to be
conducted in this area is discussed.
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Overview of System Identification

System Identification is a complex process involving several steps. It begins

with the experiment, or flight test, which yields the flight data. The flight data

must then be subjected to a data compatibility check to check for the presence
of any scale factor or bias errors. Once any such errors have been found and

accounted for, the process known as model identification may then be applied
to the corrected data. More will be said about this process later, as it is in itself
a complex process. Once a model has been determined, it must then be

verified either by comparing tlle estimates to results obtained from other

experiments, or by the application of other estimation techniques to the same

set of data. When a model has been verified, it may then be used to update the
data-base or simulator or to refine tile existing control laws of the aircraft.
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f
MODEL IDENTIFICATION

The Process of Model Identification can be separated into two distinct

steps:

(1) Model Structure Determination; and

(2) Parameter Estimation.

The Model Identification Process

The identification of a particular model can be broken down into two separate

steps: that of determining the structure of the model; and that of estimating the

parameters in this particular model. In the case of aircraft aerodynamic analysis

the parameters are often the stability and control parameters as is the case in the

present study.
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MODEL STRUCTURE
DETERMINATION

The Model Structure is determined through the use of Stepwise

Regrassion, a generalization of linear regression, as follows:

a) An adequate model is determined from postulated terms

(the postulated terms may Include linear as well as nonlinear

terms);

b) The parameters associated with the selected terms are

estimated, using the Least Squares method, by mlnlmlzlng

the following cost function:

Cai-0o-I_ xjij

Model Structure Determination

For this particular study, the structure of the model was determined through
the use of a technique known as stepwise regression, a generalization of

linear regression which works as follows. First, an adequate model is
determined by choos'ing the so-called regressors from a pool of postulated

terms. These postulated terms may include the states and inputs, as well as
any combinations of the two. Thus, tile regressors may be linear or

nonlinear. Once these regressors have been chosen, the parameters
associated with these regressors are estimated using a Least Squares method,
which minimizes the given cost function. The cost function minimizes the

sum of squares of the difference between the measured aerodynamic force or
moment coefficient, Cab and the model-predicted coefficient, given by the
remaining expression within the parentheses (x represents the chosen

regressor and 0 the associated parameter to which an estimate is sought; 0o
estimates the steady state value of the coefficient). Note that this summation

is carried out over N, the number of data points collected during the
maneuver.
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PARAMETER ESTIMATION

Three differenl Parameter Estimation Techniques were applied Io the

X-31:

1. Least Squares Method, in the form of Stepwlse Regression

2. Maximum Likelihood Method

3. Extended Kalman Filter Method

J

The Parameter Estimation Process

Three different parameter estimation techniques were applied to the X-31
drop model for this particular study: the least squares method in the form of

stepwise regression (as discussed in the previous slide); the maximum
likelihood method; and the extended Kalman filter method. Results

obtained by applying the least squares and extended Kalman filter methods

to X-31 drop model flight test data will be presented. First, however, some
of the important properties of each of these techniques is discussed. Also, an
explanation is given as to why the application of maximum likelihood to

flight test did not yield any results.
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f
LINEAR REGRESSION

Has several desirable properties, In that It Is:

- A Simple Linear Estimation Problem

- Applied to each Aerodynamic Coefficient separately

(thus keeping the number of unknowns small)

- Can be applied to an unstable system without difficulty

However,

- Parameter Estimates are biased

Linear Regression Estimation

Parameter estimation through linear regression has several desirable

properties. First, linear regression is a simple, linear estimation problem. The

regression is applied to each aerodynamic force or moment coefficient

individually, thereby keeping the number of unknowns in each eqL1ation

small. Finally, linear legression can be applied to an unstable system without

any difficulties. The drawback to using linear regression however, is that the
estimates obtained with this technique are, in general, biased. Thus, the

motivation exists to apply a second estimation technique to tile flight test

data, one that yields unbiased estimates of the paramelers. Two such methods
are maximum likelihood, and tile extended Kalman filter. Generally, the

estimates obtained from linear regression are used as the initializations for the

second estimation technique.
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fMAXIMUM LIKELIHOOD METHOD

- Optimizes Parameter Estimates by fitting Outputs predlcled by the Model

to the measured Outputs

- In the absence of process noise an Output Error Method, but with

continual Update of the Measurement Noise Covarlance Matrix

-CostFunctlon:[J = _._i=1[zi-Yi(0)]T r_l[zi- Yi(°)] 1

. Parameter Estimates are unbiased

- Nonlinear Estimation Technique (thus requiring iteratlve approach)

- Requires Integration of the Aircraft Equations of Motion (wlUcause

_ problems If aircraft Is unstable)

Maximum Likelihood Estimation

Maximum likelihood optimizes parameter estimates by fitting the model-predicted

outputs to the measured outputs. In the absence of any process noise, it is an output
error method but more general because it continually updates the measurement

noise covariance matrix. In the given cost function, zi represents the measurement, yi

the prediction (which is a function of 0, the parameters to which an estimate is

sought), and R represents the measurement noise covariance matrix. As in the case
of the least squares cost function, the maximum likelihood cost function sums over
N, tile number of data points collected during the maneuver. The estimates obtained
in this manner are unbiased. Note that maximum likelihood is a nonlinear

estimation technique and thus requires an iterative approach such as the

Newton-Raphson method. The difficulty in applying the maximum likelihood

method lies in the fact that it requires integration of the aircraft equations of motion,
which will cause problems if the aircraft is unstable. Since the X-31 is open-loop

laterally unstable at high angles of attack, application of the maximum likelihhod
method to X-31 flight data failed to produce.reasonable estimates. Thus, another

estimation technique had to be found.
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/f EXTENDED KALMAN FILTER

- A Nonlinear Estimation Problem, with the aircraft model defined as:

/ x(t) = f Ix(t), u(t)] + w(t) I Iw(t) - N (0, Q(t)) t

[z i =hi [x(ti), u(ti)] +v i I L vt~N (0, Ri) 1

Note that x contains the states as well as the parameters (i.e., the

stability and control derivatives).

- Given the model of the aircraft as described above, form an algorithm

for calculating the minimum variance estimate of x(t) :

I.e., minimize:
= E {(_- x)T (_- x) }

The Extended Kahnan Filter

A second method that was used to refine the parameter estimates obtained
through linear regression was the extended Kalman Filter. The extended
Kalman filter, like maximum likelihood, is also a nonlinear estimation

problem, with the aircraft model defined as shown above. The time

derivative of the state is assumed to be a function of the states and inputs plus
a process noise term, w(t), assumed to be of normal distribution with zero

mean and variance given by Q(t). Similarly, the measured output is assumed
to be some function of the states and inputs plus a measuremnt noise term, v_,

also assumed to be of normal distribution with zero mean and variance given
by F_. It should be noted that x may contain the states as well as the

parameters (i.e., the state vector is augmented with the stability and control
parameters to which estimates are sought). Given the model as described

above, the extended Kalman filter cost function is formed by determining the
minimum variance estimate of tile state. Here, x represents the true value of
the state, _ the estimate, and E{ } represents the expected value operator.
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 DIAGRAM OF THE KALMAN FILTER
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Timing Diagram of the Kahnan Filter

A timing diagram of the extended Kalman filter is shown, illustrating how

an estimate is obtained. Basically, a two-step process is carried out at each

data point. Ctven that an estimate x i-K+) _s known at hme t i-1. The
estimate is then propagated to the next time ti by simply integrating the

• • , • •

equatlons of mohon across one t_me step. Tlus estimate, xi(-), is then

updated by the extended Kalman filter equations, which take into account
the new measurement, z_as well as information about the assumed statistics

of the measurement and process noise terms. The updated estimate is
denoted by _i (+), the (+) indicating it is ttle value of the estimate after the

update has been carried out (similarly, a (-) indicates the value of an

estimate prior to an update). It is this update step which stabilizes the
integration scheme where ma×imum likelihood failed. Note that the
updated value of the estimate will always lie between the predicted value
and the measured value.
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f THE X-31 DROP MODEL

- Delta wing, canard configuration Intended to serve as a high-alpha

test vehicle

- Unpowered, 27% dynamically-scaled model of the full-scale aircraft.

- Laterally Unstable In high angle-of-attack flight regime.

Application to the X-31 Drop Model

An isometric of the X-3I drop model is shown above. The X-3I is a delta wing,

canard configured aircraft intended to demonstrate enhanced maneuverability
at high angles of attack. The drop model, currently undergoing flight testing at
the Plum Tree test site, is a 27% dynamically-scaled model of the full-scale
aircraft. The X-31 is known to be laterally unstable at high angles of attack.
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R(fRESULTS OF A TYPICAL MANEUVER _
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State Estimation

An algorithm using the extended Kalman filter method was applied to X-31 drop
model flight test data. The results of the application to one maneuver is shown

above. The plots show the time history of four lateral states, including the
sideslip angle, the roll-rate, the yaw-rate, and the bank-angle, during a lateral

maneuver. The solid lines represent the measured data and the dashed lines
represent the estimates as obtained using the extended Kalman filter algorithm.

As seen, the algorithm predicts the states very accurately, with the exception of
the roll-rate. The exact reason why the algorithm is able to predict all the states

accurately with the exception of the roll-rate is not yet fully understood.
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P/P ARAMETER ESTIMATION RESULTS
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Parameter Estimation

The above plots show the results for the parameter estimation as obtained by
applying the extended Kalman filter algorithm to the same maneuver
discussed in the previotls slide. Shown are the estimates for the dihedral

effect, the roll-damping, the aileron effectiveness, and the rudder

effectiveness. The solid lines represent the estimates while the accompanying
dotted lines represent the standard errors associated with those estimates.

The estimates were initialized at the values obtained from applying linear
regression to the same maneuver. As seen from the plots, all fou r estimates

return to values that are close to the initial values, indicating that the
extended Kalman filter estimates are in close agreement with the linear
regression estimates.
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COMPARISON OF RESULTS

...... Wind Tunny!I ....... ...... I
"< I_alman _ltter |

/

F : _ = o o 1

,.. ..... o , [....... _._ '_ -'_ ]

-o. 3 _ J ...... _'_ _--J .......... J
_-5 30 3_ 40 45

J%lph_ (deg)

--'-- Wind Tunnel J
o LJne_sr Regres_lon
"< Kalman Filler

n.8 .....

Car, 0.4 i .-" ._ _ -_
4

0.2 _ _--".. - _ o •

o / i ° i <' .

,%lph_ (de'g)

Comparison of Results

Shown are the comparison of the estimates obtained for the dihedral effect and the

roll-damping as obtained from wind tunnel data and from the application of linear
regression and extended Kalman filter methods to flight test data. Notice first that

the estimates obtained using linear regression and the extended Kalman filter
algorithm agree well with each other for the flight regime under study. The
apparent scatter in the estimates may be attributed to the fact that each estimate was

obtained from a different maneuver and it ispossible that the estimates are sensitive
to the particular maneuver. It appears, however, that there are some significant
differences between estimates obtained from wind tunnel data and those obtained

from flight data. Several comments may be made about this. First, the estimates

obtained from wind tunnel data were obtained from static wind tunnel testing and
thus were not subject to the dynamic effects encountered during the flight tests.

Thus, the estimates obtained from flight data can be said to embody the dynamics of
the aircraft, whereas those obtained from wind tunnel data do not. In addition, for

the case of the roll-damping, the wind tunnel estimates are known to be extremely
sensitive to the oscillation amplitude as well as the canard setting of the model

during the wind tunnel testing. Further investigations to fully explain these
differences are currently underway.

385



ff COMPARISON OF RESULTS
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Comparison of Results

Similar plots shown in the previous slide are shown in this slide for the aileron
effectiveness and rudder effectiveness. Note again that the estimates obtained

from flight data through linear regression and extended Kalman filter methods

are in good agreement with each other. Note also that estimates obtained from
wind tunnel data seem to be in better agreement for the two control derivatives

than for the previous two stability derivatives. A systematic difference is seen
between flight data estimates and wind tunnel estimates for the aileron

effectiveness. Preliminary results obtained from X-31 full-scale flight tests seem
to favor the estimates obtained from flight data. All estimates seem to be in
good agreement for the rudder effectiveness. Note that both the rudder and the

aileron have decreased effectiveness with increasing angle of attack, as would
be expected. - ................
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FUTURE WORK

Future Research will likely Include the tollowlng:

- Comparison of Wind Tunnel, Drop Model, and Full Scale Aircraft

Results.

- Explanation of possible differences In results using various

Experiments and/or Estimation Techniques.

- Extension of research to longitudinal data.

Future Research

Future research to be conducted in this area will likely include a comparison of wind

tunnel, drop model, and full-scale aircraft results. An attempt will be made to

explain any differences that may appear in the results obtained using these various

experiments and estimation techniques. And finally, an extension of this research
will be made to determine the longitudinal aerodynamic characteristics of the X-31.

387




